### HITACHI Inspire the Next

### Price List – Capacitors (for Customers)

### Capacitors 3 phase, Dry-type, Internal fused

| Туре    | kvar at 230V | Price (Baht)      | Туре          | kvar at 400V | kvar at 415V | Price (Baht) |
|---------|--------------|-------------------|---------------|--------------|--------------|--------------|
| CLMD 43 | 8 kvar       | 12,200            | CLMD 43       | 5 kvar       | 5.5 kvar     | 9,800        |
|         | 16 kvar      | 19,900            |               | 10 kvar      | 11 kvar      | 10,600       |
| CLMD 53 | 24 kvar      | 30,500            |               | 15 kvar      | 16 kvar      | 11,000       |
| CLMD 63 | 32 kvar      | 37,800            |               | 20 kvar      | 22 kvar      | 14,000       |
|         | 40 kvar      | 46,200            |               | 25 kvar      | 27 kvar      | 15,200       |
|         | 48 kvar      | 54,600            | CLMD 53       | 30 kvar      | 32 kvar      | 17,700       |
|         | 56 kvar      | 63,000            |               | 40 kvar      | 43 kvar      | 23,000       |
|         | 64 kvar      | 70,800            |               | 45 kvar      | 50 kvar      | 26,300       |
| Туре    | kvar at 480V | Price (Baht)      | CLMD 63       | 50 kvar      | 54 kvar      | 26,600       |
| CLMD 43 | 10 kvar      | 10,400            |               | 60 kvar      | 65 kvar      | 34,700       |
| CLMD 53 | 20 kvar      | 15,400            | $\mathcal{T}$ | 70 kvar      | 75 kvar      | 41,700       |
|         | 30 kvar      | 20,700            |               | 75 kvar      | 80 kvar      | 42,600       |
|         | 34 kvar      | 21,300            |               | 80 kvar      | 86 kvar      | 44,800       |
|         | 40 kvar      | 27,200            | CLMD 83       | 100 kvar     | 110 kvar     | 56,300       |
| CLMD 63 | 50 kvar      | 32,200            | Туре          | kvar at 500V | kvar at 525V | Price (Baht) |
|         | 60 kvar      | 36,400            | CLMD 43       | 9 kvar       | 10 kvar      | 10,400       |
|         | 68 kvar      | 38,600            | •             | 18 kvar      | 20 kvar      | 13,500       |
|         | 70 kvar      | 41,700            | CLMD 53       | 27 kvar      | 30 kvar      | 19,000       |
|         | 80 kvar      | 51,800            |               | 36 kvar      | 40 kvar      | 24,700       |
|         |              | $\langle \rangle$ | CLMD 63       | 45 kvar      | 50 kvar      | 31,400       |
|         |              |                   |               | 54 kvar      | 60 kvar      | 34,200       |
|         |              |                   |               | 63 kvar      | 70 kvar      | 40,600       |
|         |              | *                 |               | 72 kvar      | 80 kvar      | 44,300       |
|         |              |                   | CLMD 83       | 81 kvar      | 90 kvar      | 55,700       |
|         |              |                   |               | 90 kvar      | 100 kvar     | 60,200       |

### Remark:

- 1. Effective from 1 July 2023.
- 2. All prices do not include VAT.
- 3. Prices are subjected to change without prior notice.
- 4. Please see Capacitor products brochure for technical specification and application.

© Hitachi Energy 2022. All rights reserved. 2GSB030402-0623

### **@**Hitachi Energy (Thailand) Limited

322 Moo 4 Bangpoo Industrial Estate Soi 6, Praeksa, Muang, Samutprakarn 10280 www.hitachienergy.com

### **Hitachi Energy**

120 kvar

110 kvar

75,300

### Price List – Components (for Customers)

### **Power Factor Controller**

| Туре                             | Output    | Price (Baht) |
|----------------------------------|-----------|--------------|
| RVC-6                            | 6         | 39,200       |
| RVC-12                           | 12        | 49,000       |
| RVT-6                            | 6         | 52,300       |
| RVT-12                           | 12        | 64,400       |
| RVT-12-3P                        | 12        | 69,700       |
| MODBUS adaptor kit               | accessory | 22,400       |
| Temperature probe for RVT        | accessory | 20,100       |
| Magnetic Contactor for Capacitor |           |              |

### Max.kvar (at 400V) Price (Baht) Type UA 30-30-11 27.5 6,560 UA 50-30-11 33 9,050 UA 63-30-11 45 11,180 UA 75-30-11 50 13,700 UA 95-30-11 17,550 60 UA 110-30-11 70 21,080

### Fuse Base - 3 pole

| Туре        | Fuse size | Price (Baht) |
|-------------|-----------|--------------|
| XLP 00      | 00 & 000  | 3,200        |
| XLP 1       | 1         | 6,500        |
| OFAZ 00 P3L | 00 & 000  | 4,670        |
| OFAZ 1 P3   | 1         | 11,320       |

### **HRC Blade Fuse Link**

| Туре | Rating (A)      | Price (Baht) |
|------|-----------------|--------------|
| 000  | 50, 63, 80, 100 | 620          |
| 00   | 125, 160        | 760          |
| 1    | 200, 250        | 1020         |

### Detuning Reactor 7%

| Туре                                                   | Price (Baht) |
|--------------------------------------------------------|--------------|
| Reactor 7% for capacitor net output<br>25 kvar at 400V | 32,500       |
| Reactor 7% for capacitor net output<br>50 kvar at 400V | 41,000       |

### Remark:

### 1. Effective from 1 July 2023.

- 2. All prices do not include VAT.
- 3. Prices are subjected to change without prior notice.
- 4. Please see Capacitor products brochure for technical specification and application.

© Hitachi Energy 2023. All rights reserved. 2GSB030401-0623

### Hitachi Energy (Thailand) Limited

322 Moo 4 Bangpoo Industrial Estate Soi 6, Praeksa, Muang, Samutprakarn 10280 www.hitachienergy.com

### **Hitachi Energy**



PRODUCT BROCHURE

### **Capacitors Products** Low Voltage



– Capacitors Products Low Voltage ABB Capacitors Products Low Voltage : Improve your power quality and reduce your energy costs

### **Table of contents**

- 008 **LV Capacitor CLMD**
- 011 **Power Factor Controller RVC**
- 020 **Power Factor Controller RVT**
- 023 **UA Contactor**
- 028 **HRC Fuse Links & Fuse Bases**
- 031 **Detuning Reactor**
- 033 **Selection table**

### **LV Capacitor CLMD** from 200 V to 1000 V



### Features and benefits

### Design

The building block of each CLMD capacitor unit is a capacitor winding. These windings undergo vacuum treatment to ensure consistent electrical characteristics. Each winding is then placed in a plastic case and encapsulated in thermo-setting resin in order to obtain a perfectly sealed element. Elements are combined together to form the capacitor unit.

### **Electrical charateristics**

Dielectric losses are less than 0.2 watt per kvar. Total losses including discharge resistors, are less than 0.5 watt per kvar.

### Avaiable for single and 3-phase systems

The elements are placed inside a box made of sheet steel and connected in such a way as to supply the single or 3-phase power at the required voltage and frequency.

### Safe performance throughout the capacitor's life

- The dry type dielectric makes the CLMD capacitors leakage free, minimizing the impact on the environment.
- The sheet steel box is filled with vermiculite which is an inorganic, inert and fireproof material that can absorb the energy produced or extinguish any flames in case of a possible defect at the end of an element's life.
- In the event of a fault developing in the dielectric of the capacitor, the metallized electrode adjacent to the fault is immediately vaporized, thus insolating the fault. The capacitor then continues normal operation. This is commonly called 'self-healing' principle.
- The capacitor windings are provided with a

sequential disconnector ensuring that each element can be reliably and selectively disconnected from the circuit at the end of its life.

- CLMD capacitors are provided the thermal equalizers to ensure effective heat dissipation.
- The use of robust terminals minimizes the risk of damage during installation and reduce maintenance requirements.
- The capacitors comply with the requirements of IEC 60831-1 & 2.

### High performance in-house metallized film

ABB's completely integrated manufacturing process has resulted in the development of a special high-performance in-house metallized film from which all CLMD capacitors benefit. This film gives high breakdown strength, excellent peak current handling capability, and high capacitance stability and has an optimal self-healing design and a long life.

01 CLMD 43 — 02 CLMD 53

— 03 CLMD 63

04 CLMD 83

### A comprehensive range

### CLMD 43, 53, 63, 83

The CLMD capacitor unit is designed in such a way to give the highest level of reliability, safety, performance and power all in a robust and compact fashion.





02





03

### Technical specifications

| Standard                               | IEC 60831-1&2                                                                                    |
|----------------------------------------|--------------------------------------------------------------------------------------------------|
| Rated voltage                          | 200 V to 1000 V                                                                                  |
| Connection                             | 3-phase (single-phase on request)                                                                |
| Rated frequency                        | 50 and 60 Hz                                                                                     |
| Туре                                   | Self-healing, dry                                                                                |
| Dielectric                             | Polypropylene (metallized)                                                                       |
| Execution                              | Indoor (outdoor on request)                                                                      |
| Overvoltage                            | 1.1 U <sub>N</sub> at intervals                                                                  |
| Overcurrent                            | 1.3 I <sub>N</sub>                                                                               |
| Maximum overload                       | 1.35 times of nominal rating (IEEE Std.18-2002)                                                  |
| Maximum inrush current                 | 200 I <sub>N</sub>                                                                               |
| Safety protection                      | Internal fuse within each element                                                                |
| Tolerance on capacitance               | -5/+10%                                                                                          |
| Temperature category                   | -25/D according to IEC 60831                                                                     |
| Losses                                 | Dielectric losses <0.2 w/kvar                                                                    |
|                                        | Total <0.5 w/kvar (discharge resistor included)                                                  |
| Degree of protection                   | IP42 (IP54 on request)                                                                           |
| Voltage test                           | Between terminals 2.15 U <sub>N</sub> for 10 seconds                                             |
|                                        | Between terminals and earth 3 kV for 10 seconds                                                  |
| Insulation level                       | 3/15 kV                                                                                          |
| Discharge device                       | Internal discharge resistors                                                                     |
| Discharge time                         | <50 V in 1 minute                                                                                |
| Minimum distance between unit          | 50 mm                                                                                            |
| Minimum distance between unit and wall | 50 mm                                                                                            |
| Earth terminal                         | M8 is included                                                                                   |
| Important notice                       | The installation of capacitors on networks disturbed by harmonic may require special precautions |
|                                        | especially when there is a risk of resonance                                                     |
|                                        | Our offer is valid under normal operating conditions only (according to IEC 60831)               |
|                                        | Minimum time to reconnect capacitors to the supply is 40 seconds                                 |
|                                        | Torque for terminal: M6 : 3Nm, M8 : 6Nm, M10 : 10Nm, M12 : 15.5Nm                                |

### Dimensions

| 01<br>CLMD 43 | Туре    | H<br>(mm) | L1<br>(mm) | L2<br>(mm) | L3<br>(mm) | L4<br>(mm) | D<br>(mm) |
|---------------|---------|-----------|------------|------------|------------|------------|-----------|
| _             | CLMD 43 | 275       | 176        | 226        | 266        | 180        | 37        |
| 02<br>CLMD 53 | CLMD 53 | 310       | 346        | 396        | 436        | 350        | 37        |
| 63 and 83     | CLMD 63 | 485       | 346        | 396        | 436        | 350        | 47        |
|               | CLMD 83 | 670       | 346        | 396        | 436        | 350        | 47        |



### Selection table

| Туре    | Rating<br>(kvar) | Rating<br>(kvar) | Capacitance<br>per phase (uF) | I <sub>N</sub> (A) | I <sub>N</sub> (A) | Terminal | Weight<br>(kg) |
|---------|------------------|------------------|-------------------------------|--------------------|--------------------|----------|----------------|
|         | 230 V            |                  |                               | 230 V              |                    |          |                |
| CLMD 43 | 8                |                  | 160                           | 20.1               |                    | M6       | 4              |
|         | 16               |                  | 321                           | 40.2               |                    | M6       | 5              |
| CLMD 53 | 24               |                  | 481                           | 60.2               |                    | M8       | 10             |
| CLMD 63 | 32               |                  | 642                           | 80.3               |                    | M10      | 12             |
|         | 40               |                  | 802                           | 100.4              |                    | M10      | 14             |
|         | 48               |                  | 963                           | 120.5              |                    | M12      | 15.5           |
|         | 56               |                  | 1123                          | 140.6              |                    | M12      | 17             |
|         | 64               |                  | 1284                          | 160.7              |                    | M12      | 18             |
|         | 400 V            | 415 V            |                               | 400 V              | 415 V              |          |                |
| CLMD 43 | 5                | 5.5              | 33                            | 7.2                | 7.7                | M6       | 4.5            |
|         | 10               | 11               | 66                            | 14.4               | 15.3               | M6       | 4.5            |
|         | 15               | 16               | 99                            | 21.7               | 22.3               | M6       | 4.5            |
|         | 20               | 22               | 133                           | 28.9               | 30.6               | M6       | 5.5            |
|         | 25               | 27               | 166                           | 36.1               | 37.6               | M6       | 5.5            |
| CLMD 53 | 30               | 32               | 199                           | 43.3               | 44.5               | M8       | 8              |
|         | 40               | 43               | 265                           | 57.7               | 59.8               | M8       | 10             |
|         | 45               | 50               | 298                           | 65.0               | 69.6               | M8       | 12             |
| CLMD 63 | 50               | 54               | 332                           | 72.2               | 75.1               | M10      | 13.5           |
|         | 60               | 65               | 398                           | 86.6               | 90.4               | M10      | 14.5           |
|         | 70               | 75               | 464                           | 101.0              | 104.3              | M10      | 15.5           |
|         | 75               | 80               | 497                           | 108.3              | 111.3              | M12      | 16             |
|         | 80               | 86               | 531                           | 115.5              | 119.6              | M12      | 17             |
| CLMD 83 | 100              | 110              | 663                           | 144.3              | 153.0              | M12      | 21             |
|         | 500 V            | 525 V            |                               | 500 V              | 525 V              |          |                |
| CLMD 43 | 9                | 10               | 38                            | 10.4               | 11.0               | M6       | 4              |
|         | 18               | 20               | 76                            | 20.8               | 22.0               | M6       | 6.5            |
| CLMD 53 | 27               | 30               | 115                           | 31.2               | 33.0               | M8       | 8              |
|         | 36               | 40               | 153                           | 41.6               | 44.0               | M8       | 12             |
| CLMD 63 | 45               | 50               | 191                           | 52.0               | 55.0               | M10      | 14             |
|         | 54               | 60               | 229                           | 62.4               | 66.0               | M10      | 15             |
|         | 63               | 70               | 267                           | 72.7               | 77.0               | M10      | 17             |
|         | 72               | 80               | 306                           | 83.1               | 88.0               | M10      | 19             |
| CLMD 83 | 81               | 90               | 344                           | 93.5               | 99.0               | M12      | 21             |
|         | 90               | 100              | 382                           | 103.9              | 110.0              | M12      | 22.5           |
|         | 110              | 120              | 467                           | 127.0              | 132.0              | M12      | 24             |

### **Power Factor Controller RVC** Accurate control and monitoring of capacitor banks



• Type of switching sequence

• Type of switching sequence

RVC has become synonymous with automatic capacitor bank controller in many markets worldwide thanks to its distinct design, ease of use, reliability and versatile functions.

Thanks to the user interface upgrade with graphical icons, it is possible to commission the RVC without a manual. A slimmer casing requires less space in the capacitor bank panel.

The RVC is an easy-to-install, easy to use, smarter power factor controller and an ideal companion of your automatic capacitor banks.

### **Powerful features**

- $\bullet$  Common range for a broad network voltages from 100 V to 440 V
- Measurement and display of key parameters like voltage, current, power factor, THDV and THDI
- Fully programmable switching sequence
- 1 A or 5 A current input
- Easy commissioning
- Complete auto set-up (starting current-C/k, type of switching sequence, phase shift, special connections)
- Easy to use thanks to a user-friendly interface and ease of access to parameters for manual setting
- Highly efficient switching strategy combining integral, direct and circular switching thereby allowing:
- -to control the cos  $\boldsymbol{\phi}$  in presence of rapidly varying loads
- •to reduce the number of switching
- to avoid unnecessary intermediary switchings
- to increase the lifetime of the capacitors and contactors
- Suitable for hot environments due to maximum ambient temperature rating of 70°C
- Not affected by harmonics
- Overvoltage/undervoltage protection and protections against harmonic distortion (THDV)
- Alarm : an alarm contact is opened when any of these conditions are reached:
- the target  $\cos\phi$  is not reached within 6 minutes after all outputs have been switched on
- •the internal temperature of the RVC rises above  $85^{\circ}C$
- overvoltage/undervoltage limits are reached
- the power supply is out of range
- •the THDV exceeds the limits

### Technical specifications

| Measuring system                              | Micro-processor system for balanced 3-phase or single-phase networks                                       |  |  |  |  |  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Operting voltage                              | 100 V to 440 V                                                                                             |  |  |  |  |  |
| Voltage tolerance                             | $\pm 10\%$ on indicated operating voltages                                                                 |  |  |  |  |  |
| Frequency range                               | 50 or 60 Hz $\pm$ 5% (automatic adjustment to network frequency)                                           |  |  |  |  |  |
| Measuring circuit terminals (L2, L3 and k, I) | CAT III rated                                                                                              |  |  |  |  |  |
| Current input                                 | 1 A or 5 A (RMS)                                                                                           |  |  |  |  |  |
| Current input impedance                       | <0.1 ohm (recomended CT class 1.0, 10 VA min.)                                                             |  |  |  |  |  |
| Consumption of the controller                 | 8 VA max.                                                                                                  |  |  |  |  |  |
| Output contact rating                         | Max.continuous current: 1.5 A                                                                              |  |  |  |  |  |
|                                               | Max.peak current: 5 A                                                                                      |  |  |  |  |  |
|                                               | Max.voltage: 440 Vac                                                                                       |  |  |  |  |  |
|                                               | Terminal A is rated for a continuous current of 16 A                                                       |  |  |  |  |  |
| Alarm contact                                 | Normally open contact<br>Max.continuous current: 5 A                                                       |  |  |  |  |  |
|                                               | Rated/max.breaking voltage: 250 vac/440 vac                                                                |  |  |  |  |  |
| Power factor setting                          | From 0.7 inductive to 0.7 capacitive                                                                       |  |  |  |  |  |
|                                               | 0.01 (0 3 A                                                                                                |  |  |  |  |  |
| Number of outputs                             | $PVC_{2}$ , programmable up to 2 outputs $PVC_{2}$ , programmable up to 6 outputs                          |  |  |  |  |  |
| Number of outputs                             | PVC-8: programmable up to 8 outputs RVC-0: programmable up to 0 outputs                                    |  |  |  |  |  |
|                                               | RVC-10: programmable up to 30 outputs RVC-10: programmable up to 10 outputs                                |  |  |  |  |  |
| Switching time between steps                  | Programmable from 1s to 999s (independent of reactive load)                                                |  |  |  |  |  |
| Switching sequence                            | User defined                                                                                               |  |  |  |  |  |
| Mode of switching                             | The mode of switching for all the programmable switching sequences is integral, direct, circular or linear |  |  |  |  |  |
| Saving-function                               | All programmed parameters and modes are saved in a non-volatile memory                                     |  |  |  |  |  |
| Power outage release                          | Quick automatic disconnection in less than 20 ms (50 Hz) in case of power outage or voltage drop           |  |  |  |  |  |
| Power outage reset delay time                 | 40s                                                                                                        |  |  |  |  |  |
| Operating temperature                         | -10°C to 70°C                                                                                              |  |  |  |  |  |
| Storage temperature                           | -30°C to 85°C                                                                                              |  |  |  |  |  |
| Mounting position                             | Vertical panel mounting                                                                                    |  |  |  |  |  |
| Dimensions                                    | 144 x 144 x 43 mm (HxWxD)                                                                                  |  |  |  |  |  |
| Cut-out dimensions                            | 138 x 138 mm (HxD)                                                                                         |  |  |  |  |  |
| Weight                                        | 0.4 kg (unpacked)                                                                                          |  |  |  |  |  |
| Connector                                     | Spring clamp terminal block                                                                                |  |  |  |  |  |
| Front plate protection                        | IP43                                                                                                       |  |  |  |  |  |
| Relative humidity                             | Maximum 95%, non-condensing                                                                                |  |  |  |  |  |
| Article numbers for ordering                  | RVC-3: 2GCA294983A0050                                                                                     |  |  |  |  |  |
|                                               | RVC-6: 2GCA294984A0050                                                                                     |  |  |  |  |  |
| · · ·                                         | RVC-8: 2GCA294985A0050                                                                                     |  |  |  |  |  |
|                                               | RVC-10: 2GCA294986A0050                                                                                    |  |  |  |  |  |
|                                               | RVC-12: 2GCA294987A0050                                                                                    |  |  |  |  |  |
| Other features                                | Overvoltage and undervoltage protection                                                                    |  |  |  |  |  |
|                                               | Auto adaptation to the phase-rotation of the network and the CT-terminals                                  |  |  |  |  |  |
|                                               | Not affected by harmonics                                                                                  |  |  |  |  |  |
|                                               | Working with generative and regenerative loads                                                             |  |  |  |  |  |
|                                               | LCD contrast automatically compensated with temperature                                                    |  |  |  |  |  |
| Standards                                     | CE marked                                                                                                  |  |  |  |  |  |

### **Power Factor Controller RVT** The smart PFC for automatic capacitor bank

— 01 RVT rare view (Base model RVT6/RVT12)

— 02 Temperature measurement

— 03 Voltage and current waveforms





01

| Measurements | Values | Units |     |
|--------------|--------|-------|-----|
| Internal T   | 24.6   | °C    | 1   |
| T1           | 35.7   | °C    | 100 |
| T2           | 45.8   | °C    |     |
| T3           | 24.9   | °C    |     |
| T4           | 50.2   | °C    |     |
| T5           | 36.4   | °C    | 1   |
| T6           | 42.5   | °C    |     |
| 17           | 29.0   | °C    | -   |
| T8           | 43.8   | °C    | V   |



02

### **Distinct features**

### Power factor correction for both balanced and unbalanced loads

In nowadays installation, unbalanced loads are becoming ubiquitous, especially in residential or commercial buildings. RVT addresses your power power factor issues from both single phase loads (L-L or L-N) and 3-phase balanced/unbalanced loads. RVT is capable of compensation to each phase individually or compensation to three phases globally. Another distinct feature of RVT is individual phase measurments and energy counting.

### **Complete 3-phase measurements**

- Active power (kW) 3 ph/1 ph
- Apparent power (kVA) 3 ph/1 ph
- Reactive power (kvar) 3 ph/1 ph
- Reactive power (kvar) to reach the target  $\cos\phi$  3 ph/1 ph
- Voltage (V) 3 ph/1 ph
- Current (A) 3 ph/1 ph
- Cos  $\phi$  3 ph/1 ph
- Total Harmonic Distortion on Voltage/Current: THD V/I (%)
- Voltage/Current Harmonics : H2 up to H49 (%-spectrum)

### **Touch Screen**

3.5 inch colorful QVGA touch screen eases your parameter settings.

### **Ethernet connection**

With ABB PQ Link software, you may easily plug an RJ-45 to RVT and communicate with the controller through a 10/100BASE-T interface anywhere in the world.

### **USB** connection

RVT supports USB2.0 connection; which makes it possible to connect to a computer via a widely used USB cable to access all RVT parameters.

### Up to 8 Temperature alarm outputs

RVT can monitor 8 hot spots in your bank through eight daisy-chain connected temperature probes.

### **Real time clock**

RVT real time clock tracks and logs date and moment of each alarm and event.

### Hardware and software lock

Both hardware and software locks are equipped to the RVT for bank setting protections from any unauthorized access.

### Other powerful features

— 01 Bank settings

— 02 System values

### RVT is also a MV and HV bank controller

By connecting a PT to the RVT voltage measurements inputs, and setting the proper (V scaling) according to the PT ratio, the RVT is able to control a MV or HV capacitor bank just like a LV capacitor bank.

### Easy commissioning

The fully automatic set-up of the RVT parameters totally eases the bank commissioning process.

### Menu navigation

The clever organization of menus and sub-menus ensures menu navigation easy and intuitive.

### Guided navigation and programming

Online help information guides you step by step in the menu navigation and RVT programming.

### Communication

RVT has versatile communication interfaces: in addition to Ethernet 10/100BASE-T and USB2.0, the RVT supports RS485 connection as well. All parameters settings and measurements are accessible remotely.

### Fully automatic set-up

C/k (sensitivity), active outputs, switching sequence and phase shift can be automatically set-up.

### Programmable protection thresholds

Programmable thresholds allow you to protect the capacitor bank against over- and undervoltage, over-temperature and excessive harmonic distortions

# Mode Bank settings ? X V nominal V Outputs V V scaling V Outputs V Q step 1Ph Kvar Delays Outputs Q step 3Ph kvar Control Control I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

### Network information and capacitor bank monitoring

The RVT computes and displays network and capacitor bank information such as voltage, current, harmonics spectra and much more.

### Multi-language support

The RVT allows you to choose its working language between English, French, German, Spanish and Chinese.

### High ambient temperature rating

The RVT is suitable for harsh ambient environments thanks to its maximum ambient temperature rating of 70°C.

### Multi-voltage and multi-frequency

The RVT may be connected to network voltages in the range 100-460 Vac, 50/60 Hz. RVT's measurement voltage is up to 690 Vac without connecting any additional PT.

### Works with 5A and 1A CT's

Both 5 A and 1 A CT's may be connected to the RVT.

### **Digital inputs**

Two digital inputs can be used for day/night power factor and external alarm respectively.

### Two alarm relay outputs and fan/warning output

RVT has two alarm relay outputs (NO and NC) and a FAN/ Warning relay output.

### On-line help

A click to this button at the right top of the touch screen, it will give you an instant access to a online help system which will guide you through all RVT operation/ commissioning step by step.



### **Touch screen**

Ease your menu navigation

01 RVT Start screen

— 02 RVT screen composition

— 03 Keyboard entry screen

— 04 Harmonics voltage in chart

— 05 Legends for the touch screen icons



**Connection types** Single and 3-phase PFC control types

| Con      | nection type        | RVT 12 - 3P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RVT 6 / RVT 12 | Phase shift                                                        |                                      |                                      | Volt                                 | ages                            |                                 |                                                |                                      | Cu                              | rrents                               | 5                   | Co                   | mpensa               | tion type   |
|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------|----------------------|----------------------|-------------|
| Name     | Schematics          | Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Connection     | adjustment                                                         | L12                                  | L23                                  | L31                                  | L1N                             | L2N                             | L3N                                            | L1                                   | L2                              | L3                                   | N                   | Full C3 <sup>1</sup> | Full C1 <sup>2</sup> | Mixed C3+C1 |
| 1Ph-1LL1 | L2                  | L2 ML2<br>L3 ML3<br>CT 0 N<br>0 10<br>0 10<br>0 10<br>0 10<br>0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L2             | 0° by default<br>(see phase shift<br>table)                        |                                      | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d |                                      |                                 |                                 | - <b>b</b> .                                   | M<br>e<br>s<br>u<br>r<br>e<br>d      | •                               |                                      | ¢.                  | -1                   | yes                  |             |
| 3Ph-1LL1 | L1<br>L2<br>L3<br>N | L2 L3 CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L2             | 90° by default<br>(see phase shift<br>table)                       | *                                    | Measured                             | •                                    | •                               | ÷                               |                                                | M e a s<br>u r e d                   | ×.                              |                                      |                     | yes                  | ÷                    | *           |
| 3Ph-1LN1 | L1                  | мил<br>мил<br>мил<br>мил<br>мил<br>мил<br>мил<br>мил<br>мил<br>мил                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L1             | 0° by default<br>(see phase shift<br>table)                        | -                                    |                                      |                                      | M e a s u r e d                 |                                 | (14)                                           | M<br>e<br>s<br>u<br>r<br>e<br>d      |                                 |                                      |                     | yes                  | ).                   |             |
| 3Ph-3LL3 | L1<br>L2<br>L3<br>N | L1 ML1<br>L2 ML2<br>L3 ML3<br>CT1 ML3<br>CT2 ML3<br>CT2 ML3<br>CT3 ML3<br>CT3 ML3<br>CT4 ML3<br>CT4 ML3<br>CT5 ML3<br>CT5 ML3<br>CT4 ML3<br>CT4 ML3<br>CT5 ML3<br>CT5 ML3<br>CT5 ML3<br>CT6 ML3<br>CT6 ML3<br>CT6 ML3<br>CT7 CT7 ML3<br>CT7 ML3<br>CT7 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 0° by default<br>(Adjust<br>- phase rotation<br>- CT redirection ) | M e a s u r e d                      | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | M e a s u r e d                      | C a l c u l a t e d             | C a I c u I a t e d             | C a l c u l a t e d                            | M e a s u r e d                      | M e a s u r e d                 | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | C a - c u - a t e d | yes                  | yes                  | yes         |
| 3Ph-3LL2 |                     | L1 0 ML1<br>L2 0 ML2<br>L3 0 ML3<br>O ML3 | 9.fl           | 0° by default<br>(Adjust<br>- phase rotation<br>- CT redirection ) | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | C a l c u l a t e d             | C a l c u l a t e d             | C<br>a<br>l<br>c<br>u<br>l<br>a<br>t<br>e<br>d | M<br>e<br>s<br>u<br>r<br>e<br>d      | M<br>a<br>s<br>u<br>r<br>e<br>d | C a I c u I a t e d                  | (3)                 | yes                  | yes                  | yes         |
| 3Ph-3LN3 | L1<br>L2<br>L3<br>N | L1 ML1<br>L2 ML2<br>L3 ML3<br>N ML3<br>CT1 K1<br>CT2 K2<br>CT3 K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0° by default<br>(Adjust<br>- phase rotation<br>- CT redirection ) | Calculated                           | C a I c u I a t e d                  | C a I c u I a t e d                  | M<br>e<br>s<br>u<br>r<br>e<br>d | M<br>a<br>s<br>u<br>r<br>e<br>d | M<br>e<br>s<br>u<br>r<br>e<br>d                | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | M<br>a<br>s<br>u<br>r<br>e<br>d | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | Calculated          | yes                  | yes                  | yes         |
| 3Ph-1LL3 | L1<br>L2<br>L3<br>N | CT1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N              | 0° by default<br>(Adjust<br>- CT redirection )                     |                                      | M e a s u r e d                      | 14                                   |                                 |                                 | •                                              | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | M e a s u r e d                 | M e a s u r e d                      | C a - c u - a t e d | yes                  | yes                  | yes         |
| 3Ph-1LN3 | L1<br>L2<br>L3<br>N | CT1 CT2 CT3 CT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 0° by default<br>(Adjust<br>- CT redirection )                     |                                      | 51<br>51                             |                                      | M<br>a<br>s<br>u<br>r<br>e<br>d |                                 |                                                | M<br>e<br>s<br>u<br>r<br>e<br>d      | M<br>a<br>s<br>u<br>r<br>e<br>d | M<br>e<br>a<br>s<br>u<br>r<br>e<br>d | Ca<br>Icu<br>Iated  | yes                  | yes                  | yes         |

<sup>1</sup>C3: 3-phase capacitor control

<sup>2</sup>C1: single-phase capacitor control

### Accessories

01 RS485 Modbus adapter

02 Temperature probes

— 03 Front plate

### RS485 Modbus adapter

All RVT controllers are Modbus communication enabled. The Modbus adapter is an optional item which allows communication with a monitoring system.

All RVT parameters are available (including harmonic spectrum and tables) through an RS485 Modbus adapter.

All RVT parameters are accessible and locking parameters allows limiting their access through the Modbus communication only.

The RVT RS485 interface (3.3 V power supply) is not compatible with previous RS485 adapter (5 V power supply).

**External probes for temperature measurements** Up to eight temperature probes may be connected to the RVT. The eight temperature probes are connected to a daisy chain network, connection details is shown in the manual.

The RVT will close the fan relay if any of the eight temperature thresholds is exceeded.

Information on temperature may be recorded with the event logging function.

### IP54

The RVT front plate offers an IP43 protection degree in standard version.

The gasket accessory enhances the standard RVT protection degree to IP54.









02

### Wiring diagram

01 RVT wiring diagram (Base model RVT6/RVT12)

02 RVT wiring diagram (3-phase model RVT12-3P)

- PS1-PS2 : power supply
- ML1-3 : voltage measurements
  - : neutral connection
- k1-3, l1-3 : CT connection
- canH, canL : CAN bus

• N

- Earth : grounding
- Temp : temperature probe connection
- RS485 : RS485 adapter interface
- N1-2+/- digital inputs

- A
- 1-12
- NO/NC
- AL
- USB
- RJ45
- LOCK
- : outputs
- : output contacts of alarm relay

: common source for output relay

- : common source for alarm relay
- FAN/Warning 1-2 : FAN output relay
  - : USB connection
  - : Ethernet
  - : hardware lock



01



### Technical specifications

| Measuring system                                                 | Micro-processor system for balanced 3-phase/single-phase networks and unbalanced        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                  | network individual phase power factor control is available                              |
| Supply voltage                                                   | From 100 Vac up to 460 Vac                                                              |
| Consumption                                                      | 15 VA max.                                                                              |
| Connection type for measuring                                    | Phase-phase or phase-neutral for balanced and unbalanced network                        |
| circuit and power supply                                         |                                                                                         |
| Voltage tolerance                                                | $\pm$ 10% on indicated supply voltages                                                  |
| Measurement category (acc. to IEC 61010-1)                       | CAT III                                                                                 |
| Voltage measurement                                              | Up to 690 Vac or higher with voltage transformer                                        |
| Accuracy                                                         | 1% full scale                                                                           |
| Frequency range                                                  | 45 or 65 Hz (automatic adjustment to network frequency)                                 |
| Current input                                                    | 1 A or 5 A (RMS) (class 1 C.T.)                                                         |
| Current input impedance                                          | < 0.1 ohm                                                                               |
| Power outage release                                             | Automatic disconnection of all capacitors in case of a power outage longer than 20 ms   |
| Number of outputs                                                | RVT6/RVT12 Base model: programmable up to 6 or 12 outputs                               |
|                                                                  | RVT12-3P 3-phase model: programmable up to 12 outputs                                   |
| Output contact rating                                            | Max.continuous current: 1.5 A (ac) - 0.3 A (110 V dc)                                   |
|                                                                  | Max.peak current: 5 A                                                                   |
|                                                                  | Max.voltage: 440 Vac                                                                    |
|                                                                  | Terminal A-A are rated for a continuous current of 18 A (9 A/terminal)                  |
| Alarm contact rating                                             | One normally closed contact and one normally open contact                               |
| (voltage free contact)                                           | Max.continuous current: 1.5 A (ac)                                                      |
|                                                                  | Rated votage 250 Vac (max.breaking voltage 440 Vac)                                     |
| Fan contact rating                                               | Normally open contact                                                                   |
| (voltage free contact)                                           | Max.continuous current: 1.5 A (ac)                                                      |
|                                                                  | Rated votage 250 Vac (max.breaking voltage 440 Vac)                                     |
| Power factor setting                                             | From 0.7 inductive to 0.7 capacitive                                                    |
| Starting current setting (C/k)                                   | 0.01 to 5 A                                                                             |
|                                                                  | Automatic measurment of C/k                                                             |
| Switching sequences                                              | 1:1:1:1:1::1 - 1:2:2:2:2::2 - 1:2:4:4:4::4 - 1:2:4:8:8::8 - 1:1:2:2:2::2 - 1:1:2:4:4::4 |
|                                                                  | 1:1:2:4:8::8 - 1:2:3:3:3::3 - 1:2:3:6:6::6 - 1:1:2:3:3::3 - 1:1:2:3:6::6                |
|                                                                  | and any other customer programmable sequence                                            |
| Modbus baud rate                                                 | 300 - 600 - 1200 - 2400 - 4800 - 9600 - 19200 - 38400 - 57600 bps                       |
| CAN connection                                                   | Support CAN 2.0 B interface (for future use)                                            |
| USB host connection                                              | For future use                                                                          |
| USB device connection                                            | Available                                                                               |
| Temperature probe input connection                               | Only 2 contacts using 1-wire protocol                                                   |
|                                                                  | <ul> <li>Parasitic supply mode (no need of external power supply)</li> </ul>            |
|                                                                  | Connection to more nodes in a daisy chain network                                       |
|                                                                  | <ul> <li>8 temperature probes connection</li> </ul>                                     |
|                                                                  | <ul> <li>8 meters maximum between RVT to temperature probe or between probes</li> </ul> |
|                                                                  | • 64 meters maximum length                                                              |
| Step configuration                                               | Automatic, fixed, disabled                                                              |
| Display                                                          | QVGA 320 x 240 pixels colorful touch-screen                                             |
| Adjustable display backlighting                                  | Available                                                                               |
| Switching time between steps                                     | Programmable from 1s to 18h                                                             |
| Saving-function                                                  | All programmed parameters and modes are saved in a non-volatile memory                  |
| Auto adaptation to the connection and phase rotation of the ne   | etwork                                                                                  |
| Auto adaptation to the CT-terminals                              |                                                                                         |
| Power factor correction operation is insensitive to the presence | e of harmonics                                                                          |
| Working with passive and regenerative loads (four-quadrant op    | peration)                                                                               |
| Operating temperature                                            | -20°C to 70°C                                                                           |
| Storage temperature                                              | -30°C to 85°C                                                                           |
| Mounting position                                                | Vertical panel mounting                                                                 |
| Dimensions                                                       | Front plate: 146 x46 mm (HxW)                                                           |
|                                                                  | Rear side : 205 x 135 mm                                                                |
|                                                                  | Overall : 146 x 211 x 67 mm (HxWxD)                                                     |
| Weight                                                           | 650 g (unpacked)                                                                        |
| Connector                                                        | Cage clamp type (2.5 mm <sup>2</sup> single core cable)                                 |
| Front plate protection                                           | IP43 (IP54 on request)                                                                  |
| Relative humidity                                                | Maximum 95%, non-condensing                                                             |
| Standards                                                        | CE and UL marked                                                                        |
|                                                                  |                                                                                         |

### Dimensions



### Product line-up

| Features                    | RVT6/RVT12                  | RVT12-3P                     |
|-----------------------------|-----------------------------|------------------------------|
| Article number              | RVT6 : 2GCA291720A0050      | 2GCA291722A0050              |
|                             | RVT12 : 2GCA291721A0050     |                              |
| 1/3 phase measurements      | 1 voltage measurement input | 3 voltage measurement inputs |
|                             | 1 current measurement input | 3 current measurement inputs |
| Real time clock             | No                          | Yes                          |
| Energy measurements         | No                          | Yes                          |
| Ethernet connection         | No                          | Yes                          |
| USB host connection         | No                          | Yes                          |
| USB device connection       | Yes                         | Yes                          |
| Digital inputs              | Yes                         | Yes                          |
| Alarm/fan relays            | Yes                         | Yes                          |
| Output relays               | 6 or 12                     | 12                           |
| Lock switch                 | Yes                         | Yes                          |
| RS485 Modbus connection     | Yes                         | Yes                          |
| External temperature probes | Yes                         | Yes                          |

### **UA Contactor** Exclusive designed for capacitor switching



### **Powerful features**

### High peak current withstanding

UA contactors were specially designed for capacitor switching. They can withstand capacitors short-time peak current during switching up to 100 times of normal capacitors operating current.

### Compact design

The UA capacitors give space saving through its compact design without additional damping resistor or reactor, thus lower heat and losses.

### **Built-in terminal clamps**

Built-in terminal clamps provides ease and speed of wiring without additional termination. This reduce cost and space for the installation.

### Din-rail or screws mounting

Quick fixing on mounting rail according to IEC 715, EN 50022 and EN 50023 standard : 35 x 7.5 mm for UA 30, 35 x 15 mm for UA 30 - UA 75, 75 mm for UA 50 - UA 110. UA contactors also provides holes for screws fixing.

### Three coil terminals

UA contactors have three coil terminals. A1 and A2 on top and A2 at bottom which provide flexibility in coil wiring (UA 30 has only A1 on the top and A2 at bottom).

### Up to ten auxiliary contacts

A large number of auxiliary blocks, up to six front-mounted and four side-mounted auxiliary contacts, can be snapped on UA contactors without extra tools (only five auxiliary contacts can be snapped on the side of UA 30).

### Quick and easy snap-on accessories

All accessories of UA contactors were designed for ease and speed of mounting.

### General

When switching on 3-phase capacitors, a large transient current at high frequency (3 to 15 kHz) occurs. The peak inrush current in the case of multi-stepped bank compensation may reach up to 160 times of Irms which is much larger than one in the case of the single step bank compensation (depending on two main factors i.e. the circuit inductance at the position where the capacitors are installed and the power of the operating capacitors). This duty is therefore particularly severe for the contactor switching of the final step of the bank. In general practice, the contactor should be able to withstand such high peak current or be equipped with additional peak current damping device to prevent contactor arcing.

Furthermore, operating current of a capacitors may be increased over the nominal current for approximately 1.5 times; 1.15 times due to capacitor's tolerance and 1.3 times due to harmonics. This factor has been taken into account in the selection table below so that UA contactor operating current is 1.5 times of capacitors nominal current. In general, Fuse (rated 1.5 to 1.8 IN type gl) are used for short circuit protection. Consult us for different condition of use (higher inrush current, greater rate of harmonics, etc.).

### Technical specifications

| Standard                                           | IEC 60947-1/60947-4-1 and EN 60947-1/60947-4-1                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------|
| Number of main pole                                | 3 pole                                                                           |
| Execution                                          | Indoor                                                                           |
| Control voltage                                    | 220 V to 230 V (other on request)                                                |
| Rated operational voltage                          | 690 V                                                                            |
| Rated frequency                                    | 50/60 Hz                                                                         |
| Mechanical durability                              | 10 millions operating cycles                                                     |
| Max.electrical switching frequency                 | 240 cycle/h                                                                      |
| Electrical durability AC-6b U <sub>e</sub> ≤ 690 V | For max. peak current 100 I $_{ m N}$ of the capacitors 100,000 operating cycles |
| Peak current                                       | See the selection table                                                          |
| Degree of protection                               | Main terminals : IP10 (IP20 for UA30)                                            |
|                                                    | Coil terminals : IP20                                                            |
| Approvals                                          | UL, CSA                                                                          |
|                                                    |                                                                                  |

### Selection table

|              |           | Power in kvar (based |       | Max. permissible peak current (k |       |                        |                        |  |  |  |
|--------------|-----------|----------------------|-------|----------------------------------|-------|------------------------|------------------------|--|--|--|
|              | 230-240 V | 400-415 V            | 440 V | 500-550 V                        | 690 V | U <sub>e</sub> ≤ 500 V | U <sub>e</sub> > 500 V |  |  |  |
| UA 30-30-11  | 16        | 27.5                 | 30    | 34                               | 45    | 3.5                    | 3.1                    |  |  |  |
| UA 50-30-11  | 20        | 33                   | 36    | 40                               | 55    | 5                      | 4.5                    |  |  |  |
| UA 63-30-11  | 25        | 43                   | 48    | 50                               | 70    | 6.5                    | 5.8                    |  |  |  |
| UA 75-30-11  | 30        | 50                   | 53    | 62                               | 75    | 7.5                    | 6.75                   |  |  |  |
| UA 95-30-11  | 35        | 65                   | 65    | 70                               | 80    | 9.3                    | 8                      |  |  |  |
| UA 110-30-11 | 40        | 70                   | 75    | 80                               | 90    | 10.5                   | 9                      |  |  |  |

### Dimensions

— 01 UA 30

\_\_\_\_\_ 02 UA 50, UA 63, UA 75

— 03 UA 95, UA 110



\_\_\_\_ 02





23

### **HRC Fuse Links & Fuse Bases** Low Voltage

— 01 Inside the fuse



### **Powerful features**

Low loss low voltage high rupturing capacity fuse links type NH are supplied for 500 V.

The main element of the fuse link, the selective fuse elements are directly connected to the knife contacts by spot welding. The ABB HRC fuse link insulators are made of ceramic. Their design matches with the individual load conditions and consequently guarantees faultless and reliable operations.

ABB HRC fuse of standard design are manufactured with flag indicators on the upper end cap. After operation, the red colored leaf spring tucks up and indicates the status of the operation.

ABB Low Voltage HRC fuses are current limiting.

ABB Low Voltage HRC fuses are available for rated voltages 500 V service category gG, and are according to DIN VDE 0636 part 21; IEC 269-1/EN 60269-1; DIN VDE 0636 part 22.

All fuse links according to VDE 0636 for rated voltages 500 V have a minimum breaking capacity of 120 kA.

The geometrical dimensions of the high rupturing capacity fuse links are according to DIN 43620.V



### Fuse Links type NH 500 V

### Dimensions



| ~ 500 V        |    |      |      |      |  |  |  |  |
|----------------|----|------|------|------|--|--|--|--|
| size           | А  | В    | С    | D    |  |  |  |  |
| 000 : 50-100 A | 79 | 52.5 | 20.8 | 49.5 |  |  |  |  |
| 00 125 160 4   | 70 | 50 F | 20.5 | 50   |  |  |  |  |

| size           | Α   | В    | с    | D    | E    | F | G  | н  |
|----------------|-----|------|------|------|------|---|----|----|
| 000 : 50-100 A | 79  | 52.5 | 20.8 | 49.5 | 52   | 6 | 35 | 15 |
| 00 : 125-160 A | 79  | 59.5 | 29.5 | 50   | 52.8 | 6 | 35 | 15 |
| 1 : 200-250 A  | 135 | 66   | 39.5 | 68   | 70.8 | 6 | 40 | 20 |
|                |     |      |      |      |      |   |    |    |

### **Technical specifications**



02 Cut-off current characteristics,



### Fuse Bases type OFAX 690 V





### **Technical specifications**

- Protection to IP00
- Ease and speed of installation
  - fixing on rail to CENELEC EN 50023
  - snap-on assembly
  - space saving through 2.5 mm<sup>2</sup> in-built terminal
  - e.g. for measuring or monitoring
- Shock resistant fuse contact, contact spring of stainless steel

| Туре        | Number<br>Of poles | Term<br>Width (r | ninal<br>mm) | Fuse<br>size | I <sub>N</sub><br>(A) | Weight<br>(Kg) | Remark          |
|-------------|--------------------|------------------|--------------|--------------|-----------------------|----------------|-----------------|
| OFAX 00 P3L | 3                  |                  | 20           | 00           | 160                   | 0.44           | Open with phase |
| OFAX 1 P3   | 3                  |                  | 25           | 1            | 250                   | 1.30           | barrier IP00    |

### Dimensions



| Туре        | А   | В     | С    | D  | E  | F   | G   | н   |
|-------------|-----|-------|------|----|----|-----|-----|-----|
| OFAX 00 P3L | 145 | 109   | 7.5  | 25 | 35 | 70  | 95  | 111 |
| OFAX 1 P3   | 240 | 169.5 | 10.5 | 25 | 55 | 140 | 109 | 123 |

### Fuse Bases type EasyLine XLP

Fuse Switch Disconnector



### Properties of the EasyLine - XLP:

- XLP 00 and XLP 1
- Type tested according to EN IEC 60947-3
- Fullfills BGV A2
- Easy to recycle/EN ISO 14001 standards
- Quick-make operation device
- Integrated IP20 cable termination
- IP30 degree of protection from the front
- Replacement compatible to similar types in the market
- Voltage measuring from the front
- V-0 plastic materials

**3 - pole:** • XLP 00 160 A • XLP 1 250 A

### Technical data

|                                                           |         |       | XLP 00 |       |       | XLP 1 |
|-----------------------------------------------------------|---------|-------|--------|-------|-------|-------|
| For NH fuse links acc. to IEC60269-2-1                    |         |       | 00     |       |       | 1     |
| Rated operational voltage U <sub>e</sub> AC               | (V)     | 400   | 500    | 690   | 500   | 690   |
| Rated operational current I <sub>e</sub> AC               | (A)     | 125   | 160    | 125   | 250   | 200   |
| Thermal current with fuse link I <sub>th</sub>            | (A)     |       | 160    |       |       | 250   |
| Utilization category                                      |         | AC23B | AC22B  | AC21B | AC22B | AC21B |
| Rated insulation voltage U <sub>i</sub>                   | (V)     |       | 1000   |       |       | 1000  |
| Rated impulse withstand voltage U <sub>imp</sub>          | (kV)    |       | 8      |       |       | 8     |
| Rated conditional short circuit current                   | (kArms) |       | 50     |       |       | 50    |
| Rated frequency                                           | (Hz)    |       | 50-60  |       | Ę     | 50-60 |
| Power loss at I <sub>th</sub> without fuse link per phase | (W)     |       | 3.5 W  |       |       | 7.5 W |
| Max allowed power loss in the fuse per phase              | (W)     |       | 12 W   |       |       | 23 W  |
| Electrical durability                                     |         |       | 200    |       |       | 200   |
| Mechanical durability                                     |         |       | 1400   |       |       | 1400  |
| Degree of protection from the front acc.                  | Open    |       | IP20   |       |       | IP20  |
| to IEC60529                                               | Closed  |       | IP30   |       |       | IP30  |

### Dimensional drawings

— 01 XLP 00 — 02 XLP 1





01







SECTION A-A

22

### **Detuning Reactor**

## For capacitors up to 690 V system voltage, indoor use



### **Powerful features**

### Description

In harmonics polluted electrical system, installing capacitors for reactive power compensation can cause resonance between capacitors and electrical network which leads to considerable increase of harmonic level. Detuned filter consists of capacitor connected in series with Detuning reactors avoids such resonance and absorbs some of the particular harmonic current from electrical system. ABB Detuning reactors are designed and manufactures for their safety and reliable application in Detuned filter.

### High precision laminated core

High precision punching laminated iron core eliminates inductance's tolerances between three phases and enable accurate reactor tuning. Moreover, sufficient core linearity is obtained to withstand the switching of capacitors steps without causing saturation problems in networks of high harmonic distortion.

### High temperature class

Thermo-setting impregnation resin of temperature class H. maximum operating temperature is 50°C and maximum storage temperature is 75°C.

### Vacuum and over-pressure impregnation

Completed units of reactors are vacuumly impregnated by thermosetting resin then cured in over-pressure. This vacuum over-pressure impregnation ensures that reactor winding and core are securely structured. This leads to outstanding low noise, low vibration and better heat dissipation.

### Computer control design and test equipment

The designing software optimize reactor design to provide customers with a tailor made product, in which their requirements with regard to losses, dimensions and environmental conditions. Database controlled test equipment is used for routinely completed reactor testing at norminal current. For typetesting, a unique 3-phase harmonic generator rated at 0.9 Mvar, enabling to test reactors in a realistic environment, i.e. simultaneous fundamental and harmonic current loading. Thus, heat-run and noise dissipation tests are available, as well as induced overvoltage tests for product reliability testing.

### Technical specifications

| Rated voltage           | 3-phase, up to 690 V                                                                                                                          |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Protection degree       | IPOO                                                                                                                                          |
| Core                    | Laminated sheet iron                                                                                                                          |
| Wiring                  | Aluminum or copper                                                                                                                            |
| Terminal                | Copper-Bar                                                                                                                                    |
| Ground terminal         | Fixation holes                                                                                                                                |
| Impregnation            | Completed unit impregnated under vacuum and overpressure in impregnation thermosetting                                                        |
|                         | resin temperature class H                                                                                                                     |
| Tolerance of inductance | $\pm$ 3% when measured at 20°C ( $\pm$ 5°C) at f $_1$ and I $_N$                                                                              |
| Operation               | The reactor is designed to operate continually at a network voltage equals to ${\sf U}_{\sf N}$ with a current                                |
|                         | load of $I_{th}$ at $T_{max}$ and maintain sufficient safety margin to hot spot temperatures of its insulation                                |
|                         | while dissipating losses not exceeding P <sub>max</sub>                                                                                       |
| Insulation test         | Between winding and core of 3 kV at 1 minute according to IEC 76                                                                              |
| Applicable standard     | IEC 60076-6, VDE 0532, IEC 76                                                                                                                 |
| Operating temperature   | Minimum -25°C, maximum 50°C                                                                                                                   |
| Storage temperature     | Minimum -40°C, maximum 75°C                                                                                                                   |
| Thermal current         | $I_{th}$ is defined as the root mean square of ( $I_1$ , $I_3$ , $I_5$ , $I_7$ , $I_{11}$ , $I_{13}$ ) where $I_1$ is calculated from network |
|                         | voltage of 1.1 x U <sub>N</sub>                                                                                                               |
|                         | I <sub>1</sub> , I <sub>3</sub> , I <sub>5</sub> , I <sub>7</sub> , I <sub>11</sub> , I <sub>13</sub> are calculated from network             |
|                         | Voltage spectrum of maximum                                                                                                                   |
|                         | $U_3/U_1 = 0.5\%$                                                                                                                             |
|                         | $U_5/U_1 = 6.0\%$                                                                                                                             |
|                         | $U_7/U_1 = 5.0\%$                                                                                                                             |
|                         | $U_{11}/U_1 = 3.5\%$                                                                                                                          |
|                         | $U_{13}/U_1 = 3.0\%$                                                                                                                          |
|                         | but not exceeding a total THDU of 8%                                                                                                          |
| Linearity current       | $I_{\text{Lin}} = 1.9 I_{\text{N}}$                                                                                                           |
| Rated current           | $I_{N}$ = normal fundamental current of one phase of the capacitor-reactor combination in detuned filter                                      |
| Maximum losses          | P <sub>max</sub>                                                                                                                              |
| Inductance              | L <sub>N</sub> = nominal inductance of one phase of reactor                                                                                   |
| Net reactive power      | $Q_{net}$ = net output reactive power of 3-phase capacitor-reactor combination in detuned filter at U <sub>N</sub>                            |
|                         |                                                                                                                                               |

### **Connection diagram**



### **Reactor data**

U<sub>N</sub> = 400 V / f<sub>1</sub> = 50 Hz

|     |                |                |                |                 |                  |                  |        |      |      |      |      | 2    |      |      |       |       |       |
|-----|----------------|----------------|----------------|-----------------|------------------|------------------|--------|------|------|------|------|------|------|------|-------|-------|-------|
| Р   | Q <sub>N</sub> | L <sub>N</sub> | I <sub>N</sub> | l <sub>th</sub> | I <sub>Lin</sub> | P <sub>max</sub> | Weight | Α    | В    | С    | D    | E    | F    | FixØ | Connø | Coil  | Class |
| (%) | (kvar)         | (mH)           | (A)            | (A)             | (A)              | (W)              | (kg)   | (mm)  | AI/Cu |       |
| 7   | 25             | 1.533          | 36.1           | 42.3            | 68.6             | 175              | 18     | 228  | 205  | 140  | 150  | 95   | 114  | 11   | 9     | AI    | T50/H |
| 7   | 50             | 0.767          | 72.2           | 84.5            | 137.1            | 275              | 28     | 264  | 235  | 155  | 150  | 102  | 132  | 11   | 9     | AI    | T50/H |

### Dimensions





### **Selection table**

### For ABB Capacitors & Components in 3-phase 50 Hz

| Sustan    |          | Capacitors Components |                  |       |                    | Minimum  |                |                     |            |               |               |                                |
|-----------|----------|-----------------------|------------------|-------|--------------------|----------|----------------|---------------------|------------|---------------|---------------|--------------------------------|
| Voltage   | Туре     |                       | Rating<br>(kvar) |       | I <sub>N</sub> (A) | Terminal | Weight<br>(kg) | Fuse Bases          | Fuse Links | Contactor     | Contactor     | Cu Cable<br>(mm <sup>2</sup> ) |
|           |          |                       | 230 V            |       | 230 V              |          |                |                     |            | 230 V         |               |                                |
|           | CLMD 43  |                       | 8                |       | 20.1               | M6       | 4              | XLP 00/OFAX 00 P3L  | 000/50 A   | UA 30-30-11   |               | 6                              |
|           |          |                       | 16               |       | 40.2               | M6       | 5              | XLP 00/OFAX 00 P3L  | 000/80 A   | UA 30-30-11   |               | 10                             |
|           | CLMD 53  |                       | 24               |       | 60.2               | M8       | 10             | XLP 00/OFAX 00 P3L  | 000/100 A  | UA 63-30-11   |               | 25                             |
|           | CLMD 63  |                       | 32               |       | 80.3               | M10      | 12             | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 95-30-11   |               | 35                             |
|           |          |                       | 40               |       | 100.4              | M10      | 14             | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 110-30-11  |               | 50                             |
|           |          |                       | 48               |       | 120.5              | M12      | 15.5           | XLP 1/OFAX 1 P3     | 1/200 A    | AF 146-30-11* |               | 70                             |
|           |          |                       | 56               |       | 140.6              | M12      | 17             | XLP 1/OFAX 1 P3     | 1/250 A    | AF 190-30-11* |               | 70                             |
|           |          |                       | 64               |       | 160.7              | M12      | 18             | XLP 1/OFAX 1 P3     | 1/250 A    | AF 205-30-11* |               | 95                             |
| 400/415 V |          | 400 V                 | 415 V            | 400 V | 415 V              |          |                |                     |            | 400 V         | 415 V         |                                |
|           | CLMD 43  | 5                     | 5.5              | 7.2   | 7.7                | M6       | 4.5            | XLP 00/OFAX 00 P3L  | 000/16 A   | UA 30-30-11   | UA 30-30-11   | 2.5                            |
|           |          | 10                    | 11               | 14.4  | 15.3               | M6       | 4.5            | XLP 00/OFAX 00 P3L  | 000/25 A   | UA 30-30-11   | UA 30-30-11   | 4.0                            |
|           |          | 15                    | 16               | 21.7  | 22.3               | M6       | 4.5            | XLP 00/OFAX 00 P3L  | 000/50 A   | UA 30-30-11   | UA 30-30-11   | 6                              |
|           |          | 20                    | 22               | 28.9  | 30.6               | M6       | 5.5            | XLP 00/OFAX 00 P3L  | 000/50 A   | UA 30-30-11   | UA 30-30-11   | 10                             |
|           |          | 25                    | 27               | 36.1  | 37.6               | M6       | 5.5            | XLP 00/OFAX 00 P3L  | 000/63 A   | UA 30-30-11   | UA 30-30-11   | 10                             |
|           | CLMD 53  | 30                    | 32               | 43.3  | 44.5               | M8       | 8              | XLP 00/OFAX 00 P3L  | 000/80 A   | UA 50-30-11   | UA 50-30-11   | 16                             |
|           |          | 40                    | 43               | 57.7  | 59.8               | M8       | 10             | XLP 00/OFAX 00 P3L  | 000/100 A  | UA 63-30-11   | UA 63-30-11   | 25                             |
|           |          | 45                    | 50               | 65.0  | 69.6               | M8       | 12             | XLP 00/OFAX 00 P3L  | 00/125 A   | UA 63-30-11   | UA 75-30-11   | 25                             |
|           | CLMD 63  | 50                    | 54               | 72.2  | 75.1               | M10      | 13.5           | XLP 00/OFAX 00 P3L  | 00/125 A   | UA 75-30-11   | UA 95-30-11   | 35                             |
|           |          | 60                    | 65               | 86.6  | 90.4               | M10      | 14.5           | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 95-30-11   | UA 95-30-11   | 35                             |
|           |          | 70                    | 75               | 101.0 | 104.3              | M10      | 15.5           | XLP 1/OFAX 1 P3     | 1/200 A    | UA 110-30-11  | UA 110-30-11  | 50                             |
|           |          | 75                    | 80               | 108.3 | 111.3              | M12      | 16             | XLP 1/OFAX 1 P3     | 1/200 A    | AF 140-30-11* | AF 140-30-11* | 50                             |
|           |          | 80                    | 86               | 115.5 | 119.6              | M12      | 17             | XLP 1/OFAX 1 P3     | 1/200 A    | AF 140-30-11* | AF 146-30-11* | 70                             |
|           | CLMD 83  | 100                   | 110              | 144.3 | 153.0              | M12      | 21             | XLP 1/OFAX 1 P3     | 1/250 A    | AF 190-30-11* | AF 190-30-11* | 95                             |
| 480 V     |          |                       | 480 V            |       | 480 V              | 415 V    |                |                     |            | 480 V         |               |                                |
|           | CLMD 43  |                       | 10               |       | 12.0               | M6       | 4.5            | XLP 00/OFAX 00 P3L  | 000/25 A   | UA 30-30-11   |               | 2.5                            |
|           | CLMD 53  |                       | 20               |       | 24.1               | M8       | 8              | XLP 00/OFAX 00 P3L  | 000/50 A   | UA 30-30-11   |               | 6                              |
|           |          |                       | 27               |       | 32.5               | M8       | 8              | XLP 00/OFAX 00 P3L  | 000/63 A   | UA 30-30-11   |               | 10                             |
|           |          |                       | 30               |       | 36.1               | M8       | 10             | XLP 00/OFAX 00 P3L  | 000/63 A   | UA 30-30-11   |               | 10                             |
|           |          |                       | 34               |       | 40.9               | M8       | 10             | XLP 00/OFAX 00 P3L  | 000/80 A   | UA 30-30-11   |               | 16                             |
|           |          |                       | 40               |       | 48.1               | M8       | 12             | XLP 00/OFAX 00 P3L  | 000/80 A   | UA 63-30-11   |               | 16                             |
|           | CLMD 63  |                       | 50               |       | 60.1               | M10      | 13.5           | XLP 00/OFAX 00 P3L  | 000/100 A  | UA 63-30-11   |               | 25                             |
|           |          |                       | 54               |       | 65.0               | M10      | 13.5           | XLP 00/OFAX 00 P3L  | 00/125 A   | UA 75-30-11   |               | 25                             |
|           |          |                       | 60               |       | 72.2               | M10      | 14.5           | XLP 00/OFAX 00 P3L  | 00/125 A   | UA 75-30-11   |               | 25                             |
|           |          |                       | 68               |       | 81.8               | M10      | 14.5           | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 95-30-11   |               | 35                             |
|           |          |                       | 70               |       | 84.2               | M10      | 15.5           | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 95-30-11   |               | 35                             |
|           |          |                       | 75               |       | 90.2               | M10      | 17             | XLP 00/OFAX 00 P3L  | 00/160 A   | UA 110-30-11  |               | 35                             |
|           |          |                       | 80               |       | 96.2               | M10      | 17             | XLP 00/OFAX 00 P3L  | 00/160 A   | AF 116-30-11* |               | 50                             |
| 500/525 V |          | 500 V                 | 525 V            | 500 V | 525 V              |          |                | ,                   |            | 500 V         | 525 V         |                                |
|           | CLMD 43  | 9                     | 10               | 10.4  | 11.0               | M6       | 4              | XLP 00/OFAX 00 P3L  | 000/25 A   | UA 30-30-11   | UA 30-30-11   | 2.5                            |
|           |          | 18                    | 20               | 20.8  | 22.0               | M6       | 6.5            | XLP 00/OFAX 00 P3L  | 000/50 A   | UA 30-30-11   | UA 30-30-11   | 6                              |
|           | CLMD 53  | 27                    | 30               | 31.2  | 33.0               | M8       | 8              | XLP 00/OFAX 00 P3L  | 000/63 A   | UA 30-30-11   | UA 30-30-11   | 10                             |
|           |          | 36                    | 40               | 41.6  | 44.0               | M8       | 12             | XLP 00/OFAX 00 P3L  | 000/80 A   | UA 50-30-11   | UA 30-30-11   | 16                             |
|           | CLMD 63  | 45                    | 50               | 52.0  | 55.0               | M10      | 14             | XLP 00/OFAX 00 P3L  | 000/100 A  | UA 63-30-11   | UA 50-30-11   | 16                             |
|           |          | 54                    | 60               | 62.4  | 66.0               | M10      | 15             | XI P 00/OFAX 00 P3I | 00/125 A   | UA 75-30-11   | UA 63-30-11   | 25                             |
|           |          | 63                    | 70               | 72.7  | 77.0               | M10      | 17             | XLP 00/OFAX 00 P3I  | 00/125 A   | UA 95-30-11   | UA 63-30-11   | 35                             |
|           |          | 72                    | 80               | 83.1  | 88.0               | M10      | 10             |                     | 00/160 4   | UA 110-20-11  | UA 95-30-11   |                                |
|           | CI MD 83 | ۲ <u>د</u><br>81      | 90               | 93.5  | 99.0               | M12      | 21             |                     | 00/160 A   | AF 116-30-11* | UA 110-30-11  | 50                             |
|           | CLI-D 03 | 01                    | 100              | 103.9 | 110.0              | M12      | 22 5           |                     | 1/200 4    | ΔΕ 140-20-11* | ΔE 146-30-11* | 50                             |
|           |          | 110                   | 120              | 103.9 | 122.0              | MID      | 22.3           |                     | 1/200 A    | AF 140-50-11" | AF 100 20 11* | 50                             |
|           |          | 110                   | 120              | 121.0 | 132.0              | MTS      | 24             | ALP 1/ OFAX 1 P3    | 1/250 A    | AF 140-30-11* | AL 130-20-11. | 10                             |

\* For single step, please consult ABB for multi step switching

### For power rating 75, 80 and 100 kvar without reactor

| System  | Step x Power  |         | c                | apacitors          |          |                |                 | Components |           | Minimum                        |
|---------|---------------|---------|------------------|--------------------|----------|----------------|-----------------|------------|-----------|--------------------------------|
| Voltage | rating (kvar) | Туре    | Rating<br>(kvar) | I <sub>N</sub> (A) | Terminal | Weight<br>(kg) | Fuse Bases      | Fuse Links | Contactor | Cu Cable<br>(mm <sup>2</sup> ) |
| 400 V   | 3 x 75        | CLMD 63 | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 265    | 50                             |
|         | 6 x 75        | CLMD 63 | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 400    | 50                             |
|         | 12 x 75       | CLMD 63 | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 400    | 50                             |
|         | 3 x 80        | CLMD 63 | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 265    | 70                             |
|         | 6 x 80        | CLMD 63 | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 400    | 70                             |
|         | 12 x 80       | CLMD 63 | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 580    | 70                             |
|         | 3 x 100       | CLMD 83 | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 400    | 95                             |
|         | 6 x 100       | CLMD 83 | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 580    | 95                             |
|         | 12 x 100      | CLMD 83 | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 580    | 95                             |

### For power rating 75, 80 and 100 kvar with 7% reactor

| System<br>Voltage | Step x Power<br>rating (kvar) | Capacitors |                  |                    |          |                | Components      |            |           | Minimum                        |
|-------------------|-------------------------------|------------|------------------|--------------------|----------|----------------|-----------------|------------|-----------|--------------------------------|
|                   |                               | Туре       | Rating<br>(kvar) | I <sub>N</sub> (A) | Terminal | Weight<br>(kg) | Fuse Bases      | Fuse Links | Contactor | Cu Cable<br>(mm <sup>2</sup> ) |
| 400 V             | 3 x 75                        | CLMD 63    | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 140    | 50                             |
|                   | 6 x 75                        | CLMD 63    | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 140    | 50                             |
|                   | 12 x 75                       | CLMD 63    | 75               | 108.3              | M10      | 16             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 140    | 50                             |
|                   | 3 x 80                        | CLMD 63    | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 146    | 70                             |
|                   | 6 x 80                        | CLMD 63    | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 146    | 70                             |
|                   | 12 x 80                       | CLMD 63    | 80               | 115.5              | M10      | 17             | XLP 1/OFAX 1 P3 | 1/200 A    | AF 146    | 70                             |
|                   | 3 x 100                       | CLMD 83    | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 190    | 95                             |
|                   | 6 x 100                       | CLMD 83    | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 190    | 95                             |
|                   | 12 x 100                      | CLMD 83    | 100              | 144.3              | M12      | 21             | XLP 1/OFAX 1 P3 | 1/250 A    | AF 190    | 95                             |

### For ABB 7% Detune Bank in 3-phase 50 Hz

| System  | Target    | Reactor Type                | Capacitors Type   |                        | Minimum      |                 |                                |  |
|---------|-----------|-----------------------------|-------------------|------------------------|--------------|-----------------|--------------------------------|--|
| Voltage | kvar/step |                             |                   | Fuse Bases             | Fuse Links   | Contactor       | Cu cable<br>(mm <sup>2</sup> ) |  |
| 400 V   | 25        | 7% for 25 kvar at 400 V     | 40 kvar 525 V     | XLP 00/OFAX 00 P3L     | 000/63 A     | UA 30-30-11     | 10                             |  |
|         | 50        | 7% for 50 kvar at 400 V     | 80 kvar 525 V     | XLP 00/OFAX 00 P3L     | 00/125 A     | UA 75-30-11     | 35                             |  |
|         | 100       | 7% for 100 kvar at 400 V    | 2x(80 kvar 525 V) | XLP 1/OFAX 1 P3        | 1/250 A      | AF 190-30-11    | 95                             |  |
|         | 100       | 2x(7% for 50 kvar at 400 V) | 2x(80 kvar 525 V) | 2x(XLP 00/OFAX 00 P3L) | 2x(00/125 A) | 2x(UA 75-30-11) | 2x35                           |  |

Note : For information only. Please refer to application standards, local rules & regulations and technical specifications.

| Nete |
|------|
| Note |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |





### ABB LIMITED

322 Moo 4 Bangpoo Industrial Estate Soi 6, Sukhumvit Road, Praeksa, Muang Samutprakarn 10280 THAILAND Phone: +66 2 665 1000 Fax: +66 2 324 0502

www.abb.co.th